

View From Below: Soils can be sexy, too (and why you should care)

- Need a better understanding of factors controlling soil C dynamics and its effect on atmospheric CO₂
- Scientific and political interest in C sequestration in soils
- Rehabilitation degraded soils: agricultural and natural
- SOM as fertility source
- Bioremediation

Land Use Change: Large-Scale **Field Experiments**

LUC affects factors controlling soil C storage:

Interactions of all of the above to slow down organic matter decomposition.

Reforested Tropical Pastures

- Differences in quantity and quality of above and belowground litter inputs.
- Differences in ¹³C / ¹²C of tropical forage grasses (C₄ photosynthesis) and woody vegetation (C₃).

 C_4 plants (average ∂ ¹³C = -12‰)

 C_3 plants (average ∂ ¹³C = -25‰)

Secondary forests dominate tropical (and temperatel) landscape.

- Deforestation main land use studied in tropics
- Puerto Rico is at opposite end of land conversion: reforestation important process
- Reforestation important ecologically and economically

Research Objectives:

- To examine mechanisms that lead to soil C storage in tropical soils
- To describe general pattern in soil C accumulation or loss with reforestation of tropical pastures

PUERTO RICO

ATLANTIC OCEAN 0 20 km 0 12 mi

Caribbean Sea

@ Lonely Planet

CHRONOSEQUENCE APPROACH

- •Wet subtropical forest (400-600 masl).
- •7 age classes, 3 site replicates per age for a total of 21 sites

Field Sampling Summers 2001, 2002, 2003

- Collect soils every 10 cm to a 1 m depth, 3 soil pits per site
- Collect roots, forest floor
- Litterfall (biweekly)
- Tree basal area measurements and species identification

Objective 1 : Changes in soil C with forest succession

- Deforestation usually results in initial loss of soil organic matter (C and nutrients)
- Reforestation and afforestation as policy actions for increasing C sequestration in tree biomass and soils
- Reforestation: both net changes in soil C stocks and no changes have been measured
- Land use type (agriculture vs. pasture), intensity and duration matter

Age or land use did not have a significant effect on total C content in the top 1 m of Soil (or top 30 cm- data not shown).

3 pits per site, n= 3 sites

Pastures did not have greater fine root biomass than forests at any depth.

Basal Area (m2/ha) and stem density of trees with DBH >10 cm increased with forest age.

At least 27 genera in 23 families (DBH >10 cm)

Total annual leaf litterfall did not vary with forest age.

Litter collected biweekly from 5 baskets per site.

Using C Isotopes to Estimate SOM Turnover Times

 Simple mixing model to determine proportion of C4 vs. C3 derived C in SOM pool:

%C4 =
$$(\delta - \delta L / \delta G - \delta L) \times 100$$

%C3 = $100 - \%$ C4

- where δ is the δ ¹³C of the soil sample in question, $\delta_{\mathbf{L}}$ is the δ ¹³C of a composite sample of forest floor and roots (or C_3), and $\delta_{\mathbf{G}}$ is a composite sample of pasture grass tissues (C_4).
- "Bomb" Radiocarbon (¹⁴C) will be analyzed at CAMS-LLNL

Soil δ ¹³C-C (‰) with Depth

Contribution of C4-C and C3-C (in t C/ha) to total soil C pool in top 10 cm

Contribution of C4-C to total soil C pool (0- 10 cm)

Fraction C_4 -C in-situ = 0.59 -0.021 (age) (r^2 = 0.74, p = 0.01) Fraction C_4 -C end-members = 0.57 -0.024 (age) (r^2 = 0.70, p = 0.02)

Average C_4 -C value of -15.02 ‰ and C_3 -C value of -29.52 ‰

C Fractionation

- Experimental and modeling studies suggest that the total C pool is composed of different components, or "fractions", with different residence times in the soil
- Attempts to separate total C pool into "fractions", ie. stages of decomposition
- Common methods: particle size, density, aggregate-size, solubility, isotopes
- Operationally defined

Density Fractionation

- Physical separation of soil organic matter:
 - Free Light Fraction (f LF): identifiable leaf, root fragments, unattached organic debris (youngest)
 - Occluded Light Fraction (o LF): OM released after disruption of aggregates (older)
 - Heavy Fraction (HF): mineral associatedOM (oldest)

Objective 2 : Mechanisms of soil C storage

 Examine effect of changes in soil physical structure and plant litter chemistry on the formation of stable SOM.

Hypotheses:

- 1.) The primary mechanism for soil C storage during reforestation will be the development of an aggregate hierarchy.
- 2.) The hydrophobic content of plant litter will be more important than traditional measures of litter quality in the formation of stable soil C.

H2: The hydrophobic content of plant litter will be more important than traditional measures of litter quality in the formation of stable soil C.

- Litter C:N, lignin:N and lignin content as measure of decomposability
- But lignin degraded in soils
- Evidence of accumulation of nonpolar C in older soil C fractions
- Recent attention to plant and soil lipids as precursors to most stable SOM

- Soil lipids: plant and microbially derived
- Plant lipids: secondary compounds, waxes, suberin, terpenoids.
- Theories of plant herbivory suggest production of these secondary plant compounds increases with forest succession

Preliminary Litter Chemistry Results

- On average, forest tissues had higher hydrophobic (NPE) and tannin concentrations than pasture tissues (p<0.05).
- Leaves had higher NPE than roots across land use (p<0.05).
- Aboveground pasture tissues had significantly lower levels of NPE than the 20 year old forest leaves (p<0.05).

Nonpolar extractables (% dw)

Tannins (% dw)

• There were no patterns in C:N and lignin:N across land use or over time.

C:N

Leaves (blue) and roots (green) (0-10 cm)

Lignin:N

Species differences in leaf tissue chemistry

Syzigium jambos
(EUJA), a common
invader in secondary
forests, had the highest
tannin and NPE
concentrations; while
Prestoea montana
(PRMO), more important
in old-growth forests
had the lowest values
for tannin and NPE.

Litter quality variables for grab samples of leaves collected at the same site from common tree species. Species codes: SCMO, Schefflera morototoni; PRMO, Prestoea montana; TAHE, Tabebuia heterophylla; EUJA, Syzigium jambos; OCLE, Ocotea leucoxylon; MYDE, Myrcia

deflexa; CESC, Cecropia schreberiana.

Hydrophobic C: protected by chemical recalcitrance or physical protection? Interaction?

- Are the C fractions with slowest turnover rates hydrophobic?
- Approach
- 1. Characterize and quantify hydrophobicity of SOM and litter inputs: nonpolar organic extractions, lipid analysis (GC-MS and ¹³C-NMR)
- 2. Characterize nonpolarity C in light fraction (using XAD-8 resins) and sorbed to minerals (13C-NMR); correlate with turnover rates of fractions

- 3. Test for correlations between chemistry plant inputs and SOM pools, SOM turnover rates, litter decomposition rates
- 4. How does chemical composition of SOM/DOM affect physical protection?
- Quantify sorptive capacity of soils at my sites
- Perform adsorption experiments with "native" and "transplant" DOM and SOM and litter extracts

Summary

- Patterns in soil C gain and loss over time using 13C and 14C
- Correlations between litter quality (hydrophobicity) and soil turnover rates

Collaborators

- Dr. Whendee Silver (U.C. Berkeley): soil respiration and other trace gas production
- Dr. Rebecca Ostertag (U. of Hawaii): foliar and root litter decomposition experiments (litter vs. site quality transplant)
- Dr. Margaret Torn (LBNL & GREF mentor): 13C-CO₂ soil respiration and ¹⁴C modeling
- Dr. Chris Swanston (CAMS, LLNL): density fractionation and ¹⁴C analyses
- Dr. Sarah Burton (EMSL, PNNL): ¹³C-NMR facility and data interpretation
- Mario Flores: textural analyses and particlesize fractionation

The Plant Ecologists' Café

Pastures did not differ from forests in C content in top 30 cm of soil profile.

Bulk density in the 0-10 cm depth did not differ significantly. Two of the three old-growth forest sites are visited by cattle; the third site with no evidence of cattle had the lowest bulk density value recorded: 0.49 g/cm3.

Assuming a δ_L of -17‰ and a δ_G of -26‰, at our 20 year old sites:

Soil depth (cm)	$%C_3$	$%C_4$	C_3/C_4
0-10	100	0	
10-20	76	24	3.10
20-30	67	33	2.06
30-40	74	26	2.79
40-50	55	45	1.21
50-60	50	50	1.01

Table 1. Example of proportion of C_3 and C_4 derived C for 20 year old sites.

• After 10 years forest regrowth, 20 tC/ha gained, but 16.4 t C/ha of pasture-derived C was lost.

• Challenges using ¹³C method:

- unable to distinguish between residual "primary"
 forest C and new secondary forest C (both C₃)
- uncertainties in δ^{13} C of end points, ages, turnover rates, land use history
- assumptions inherent in "chronosequence" studies
- simple mixing model (will try to improve)

I will also use ¹⁴C and bomb carbon models to "date" soil C fractions and resolve uncertainties in turnover rates.

Average forest floor biomass in secondary forests.

H1: The primary mechanism for soil C storage during reforestation will be the development of an aggregate hierarchy.

 AGGREGATE **HIERARCHY:** model hierarchical contribution SOM to soil aggregate stabilization (Oades and Waters 1991)

From G. Vrdoljak's PhD Thesis, U.C. Berkeley

- C protected within microaggregates where accessibility to microbes is limited or anaerobic conditions may occur
- Lower C contents in cultivated soils attributed to disruption of soil aggregates
- C within aggregates is older than C on aggregate surfaces
- CO₂ lost from disturbed aggregates

- Aggregate hierarchy thought not to be important in highly weathered tropical soils
- But recent evidence AH in Oxisols
- Recovery of aggregation post disturbance?
- Effect cattle vs pasture grasses bulk density vs roots

• <u>Approach:</u>

- Test for differences in waterstable aggregate size distribution across sites
- Test for presence of aggregate hierarchy:
 - expect total C and N to increase with size
 - expect C:N ratio to decrease from larger to smaller

Prelimary Results:

Large macroaggregates (>4.75 mm diameter) are very stable to slaking in water for 5 min (standard method in temperate agricultural soils) so treatment did not result in differences in agg distribution and stability across sites.

Percentage of the initial mass of soil aggs > 4750 um that disassociated into smaller agg sizes and into primary particles.

C composition of different aggregate sizes

- The defining characteristics of AH are:
- (1) a gradual breakdown of macroaggregates into microaggregates with increasing dispersing energy;
- (2) an increase in C content with increasing aggregate size; and
- (3) decrease in C turnover rates from macroaggregates to microaggregates (Six et al. 2000).